Anticancer effect and feasibility study of hyperthermia treatment of pancreatic cancer using magnetic nanoparticles.

نویسندگان

  • Lufang Wang
  • Jian Dong
  • Weiwei Ouyang
  • Xiaowen Wang
  • Jintian Tang
چکیده

We investigated the effect and feasibility of hyperthermia treatment on subcutaneous pancreatic cancer in female Kunming mice, using a murine pancreatic cancer cell line (MPC-83) established by us and found in this study to originate from epithelial pancreatic acinus. Magnetic fluid (MF) with ferromagnetic particles of about 20 nm in size was used as a heating mediator. MF was injected into the subcutaneous nodules with subaxillary regions of mice 10 days after tumor transplantation; homogeneous distribution of magnetic nanoparticles in nodules was easily detected by X-ray 24 h later. Mice were allocated to four groups as follows: no treatment (control); MF injection alone; alternating magnetic field (AMF) irradiation alone; and MF injection and hyperthermia generated by applying AMF (300 kHz, 110 Gs). The two hyperthermia-treated subgroup tumors reached central temperatures of 47 and 51˚C, respectively, for 30 min; while rectal temperature in both subgroups remained below 36˚C. Tumor growth was inhibited and survival significantly prolonged in the hyperthermia group compared with other groups (P<0.05). Tumor cells near the MF in the hyperthermia group apoptosed or necrosed immediately after hyperthermia. By day 14, there were no subcutaneous nodules; and residual magnetic nanoparticles were ingested by phagocytes. Nuclear proliferating cell nuclear antigen (PCNA) decreased in hyperthermia group tumor cells compared to the other groups; cytoplasmic heat shock protein 70 (HSP 70) was conspicuously higher immediately after hyperthermia (P<0.05). This technique had therapeutic potential and provided a new idea in the treatment of pancreatic cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An investigation of the effect of hyperthermia using iron and magnetic nanoparticles in cancer treatment

Introduction: hyperthermia using different methods such as microwave and magnetic waves is one of the methods to treat cancer. In this method, iron and magnetic nanoparticles are used to increase the temperature and increase the effect of hyperthermia as auxiliary treatment with chemotherapy and radiotherapy. In this study, the role of iron and magnetic nanoparticles have been ...

متن کامل

Study on Fe3O4 Magnetic Nanoparticles ‎Size Effect on Temperature Distribution ‎of Tumor in Hyperthermia: A Finite ‎Element Method ‎

   In recent years, Hyperthermia has been used as an emerging technique for cancer treatment, especially for localized tumors. One of the promising cancer treatment approaches is magnetic nanoparticle (MNPs) Hyperthermia. In this theoretical work, the temperature distribution of a common tumor over the different sizes of Fe3O4 magnetic nanoparticles, namely 25, 50, 100, and 200 nm, was stud...

متن کامل

Induced tissue cell death by magnetic nanoparticle hyperthermia for cancer treatment: an in silico study

In this paper, we simulate magnetic hyperthermia process on a mathematical phantom model representing cancer tumor and its surrounding healthy tissues. The temperature distribution throughout the phantom model is obtained by solving the bio-heat equations and the consequent cell death amount is calculated using correlations between the tissue local temperature and the cell death rate. To have a...

متن کامل

Cisplatin-loaded superparamagnetic nanoparticles modified with PCL-PEG copolymers as a treatment of A549 lung cancer cells

Magnetic nanoparticles have been highly regarded because of their unique properties, such as hyperthermia, medicine control release, and diagnostic applications. The main aim of the current paper is to offer a new system for the modification of Fe3O4 (SPIONs) superparamagnetic nanoparticles physically and chemically with polymers through physical retention. These modified nanoparticles have bee...

متن کامل

A Review of Recent Advances in Iron Oxide Nanoparticles as a Magnetic Agent in Cancer Diagnosis and Treatment

Aims In recent years, iron oxide nanoparticles have shown incredible possibilities in biomedical applications due to their non-toxic function in biological systems. Furthermore, these nanoparticles have multifunctional applications, such as antibacterial, antifungal, and anticancer effects in medicine due to their magnetic properties.  Methods & Materials In this article, 49 articles related t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Oncology reports

دوره 27 3  شماره 

صفحات  -

تاریخ انتشار 2012